Dynamics of particle aggregation in dewetting films of complex liquids

Author:

Zhang J.ORCID,Sibley D.N.ORCID,Tseluiko D.ORCID,Archer A.J.ORCID

Abstract

We consider the dynamic wetting and dewetting processes of films and droplets of complex liquids on planar surfaces, focusing on the case of colloidal suspensions, where the particle interactions can be sufficiently attractive to cause agglomeration of the colloids within the film. This leads to an interesting array of dynamic behaviours within the liquid and of the liquid–air interface. Incorporating concepts from thermodynamics and using the thin-film approximation, we construct a model consisting of a pair of coupled partial differential equations that represent the evolution of the liquid film and the effective colloidal height profiles. We determine the relevant phase behaviour of the uniform system, including finding associated binodal and spinodal curves, helping to uncover how the emerging behaviour depends on the particle interactions. Performing a linear stability analysis of our system enables us to identify parameter regimes where agglomerates form, which we independently confirm through numerical simulations and continuation of steady states, to construct bifurcation diagrams. We obtain various dynamics such as uniform colloidal profiles in an unstable situation evolving into agglomerates and thus elucidate the interplay between dewetting and particle aggregation in complex liquids on surfaces.

Funder

Engineering and Physical Sciences Research Council

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3