On the efficacy of surface-attached air bubbles as thermal insulators for pressure-driven internal flow

Author:

Shojaee S. AmirORCID,Flynn M.R.ORCID

Abstract

There exists much research examining the role of surface-attached air bubbles in drag reduction. Most of this literature considers isothermal flows and so ignores temperature differences, e.g. with the solid boundary. Here, we relax this assumption and ask whether surface-attached air bubbles may prove useful as thermal insulators, e.g. when the solid temperature differs from that of the cargo liquid (water). Theoretical and numerical solutions, e.g. for the variation of the Nusselt number with bubble thickness, are presented for cases characterized by a uniform surface heat flux (USF). We examine channel and pipe flow geometries, and consider instances where the net mass flow rate within the (continuous) air bubble is zero or non-zero. When the thermal boundary condition is changed to uniform surface temperature (UST), our analysis limits attention to numerical solutions. We identify and discuss a remarkable connection between the drag reduction problem and the USF thermal insulation problem: the proportional change of water temperature with bubble thickness is identical to the proportional change of drag. Also, and although our analysis is conducted in the ‘perfect plastron limit’, we can, e.g. by evaluating hydrodynamic and thermal slip lengths, contrast our work against related studies where heat transfer occurs through the ridges or pillars that affix the air layer in place. This comparison indicates that the oft-applied adiabatic interface assumption may prove restrictive in some regions of the parameter space. We conclude by examining the implications of our work in the context of UST micro-channels, which are relevant to various lab-on-a-chip technologies.

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3