Turbulence anisotropy effects on corner-flow separation: physics and turbulence modelling

Author:

Tamaki YoshiharuORCID,Kawai SoshiORCID

Abstract

The secondary motion caused by turbulence anisotropy is one of the crucial factors for determining the size of corner-flow separation in a side-wall interference flow field. Therefore, through a wall-resolved large-eddy simulation (LES) of a side-wall interference flow field, this study investigates the effects of the secondary motion on the corner-flow separation and explores the turbulence modelling that can reproduce the secondary flow motion. The momentum transport analysis using the LES results shows that the secondary vortex has twofold effects on delaying the corner-flow separation: the convective transport of the streamwise momentum towards the corner, and the enhanced production of turbulence by increasing the shear. Also, the vorticity transport analysis reconfirms that the secondary motion is caused primarily by turbulence anisotropy in the outer layer of the turbulent boundary layer. Furthermore, a quadratic constitutive relation (QCR) is proposed based on the analysis of the relationship between the Reynolds stress and velocity gradient. The proposed QCR consists of two quadratic terms and three constant parameters. The a priori analysis using the LES data shows that the proposed QCR represents the anisotropy of the Reynolds stress overall better than the existing QCR. Reynolds-averaged Navier–Stokes simulation using the proposed QCR with the Spalart–Allmaras turbulence model shows improvements in the prediction of the corner-flow separation compared to the results obtained by the existing QCR with the same turbulence model.

Funder

Japan Society for the Promotion of Science

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3