Dynamic feature-based deep reinforcement learning for flow control of circular cylinder with sparse surface pressure sensing

Author:

Wang QiuleiORCID,Yan LeiORCID,Hu GangORCID,Chen WenliORCID,Rabault JeanORCID,Noack Bernd R.ORCID

Abstract

This study proposes a self-learning algorithm for closed-loop cylinder wake control targeting lower drag and lower lift fluctuations with the additional challenge of sparse sensor information, taking deep reinforcement learning (DRL) as the starting point. The DRL performance is significantly improved by lifting the sensor signals to dynamic features (DFs), which predict future flow states. The resulting DF-based DRL (DF-DRL) automatically learns a feedback control in the plant without a dynamic model. Results show that the drag coefficient of the DF-DRL model is 25 % less than the vanilla model based on direct sensor feedback. More importantly, using only one surface pressure sensor, DF-DRL can reduce the drag coefficient to a state-of-the-art performance of approximately 8 % at Reynolds number $(Re) = 100$ and significantly mitigates lift coefficient fluctuations. Hence, DF-DRL allows the deployment of sparse sensing of the flow without degrading the control performance. This method also exhibits strong robustness in flow control under more complex flow scenarios, reducing the drag coefficient by 32.2 % and 46.55 % at $Re =500$ and 1000, respectively. Additionally, the drag coefficient decreases by 28.6 % in a three-dimensional turbulent flow at $Re =10\,000$ . Since surface pressure information is more straightforward to measure in realistic scenarios than flow velocity information, this study provides a valuable reference for experimentally designing the active flow control of a circular cylinder based on wall pressure signals, which is an essential step toward further developing intelligent control in a realistic multi-input multi-output system.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Reference68 articles.

1. Mnih, V. , Badia, A.P. , Mirza, M. , Graves, A. , Lillicrap, T. , Harley, T. , Silver, D. & Kavukcuoglu, K. 2016 Asynchronous methods for deep reinforcement learning. In Proceedings of the 33rd International Conference on Machine Learning (ed. M.F. Balcan & K.Q. Weinberger), pp. 1928–1937. PMLR.

2. The curse(s) of dimensionality

3. Comparative analysis of machine learning methods for active flow control

4. Machine Learning Control – Taming Nonlinear Dynamics and Turbulence

5. Weber, T. , et al. 2018 Imagination-augmented agents for deep reinforcement learning. In Advances in Neural Information Processing Systems (ed. I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan & R. Garnett). Curran Associates.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning for bridge wind engineering;Advances in Wind Engineering;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3