Abstract
A lattice-ordered group is a group and a lattice such that the group operation distributes through the lattice operations (i.e. f(g ∨ h)k = fgk ∨ fhk and dually). Lattice-ordered groups are torsion-free groups and distributive lattices. They further satisfy f ∧ g = (f−1 ∨ g−1)−1 and f ∨ g = (f−1 ∧ g−1)−1. Since the lattice is distributive, each lattice-ordered group word can be written in the form ∨A ∧B ωαβ where A and B are finite and each ωαβ is a group word in {xi: i ∈ I}. Unfortunately, even for free lattice-ordered groups, this form is not unique. We will use the prefix l- for maps between lattice-ordered groups that preserve both the group and lattice operations, and e for the identity element. A presentation (xi;rj(x) = e)i∈I, j∈J is the quotient of the free lattice-ordered group F on {xi: i∈I} by the l-ideal (convex normal sublattice subgroup) generated by its subset {rj(x): j ∈ J}. {xi: i ∈ I} is called a generating set and {ri(x):j∈J} a defining set of relations. If I and J are finite we have a finitely presented lattice-ordered group. If we can effectively enumerate all lattice-ordered group words r1(x), r2(x),… in xi; i∈I}. If I is finite and J (for this enumeration) is a recursively enumerable set, we say that we have a recursively presented lattice-ordered group. Throughout Z denotes the group of integers and ℝ the real line.Our purpose in this paper is to prove the natural analogues of three theorems from combinatorial group theory (5), chapter IV, theorems 4·9, 3·1 and 3·5-in particular, theorem C is a natural analogue of an unpublished theorem of Philip Hall (4).
Publisher
Cambridge University Press (CUP)
Reference6 articles.
1. (4) Hall P. Unpublished manuscript, 1968.
2. The isomorphism problem and undecidable properties for finitely presented lattice-ordered groups;Glass;Proc. Ordered Sets Conference
3. Results in partially ordered groups
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献