Taylor coefficients of mock-Jacobi forms and moments of partition statistics

Author:

BRINGMANN KATHRIN,MAHLBURG KARL,RHOADES ROBERT C.

Abstract

AbstractWe develop a new technique for deriving asymptotic series expansions for moments of combinatorial generating functions that uses the transformation theory of Jacobi forms and “mock” Jacobi forms, as well as the Hardy-Ramanujan Circle Method. The approach builds on a suggestion of Zagier, who observed that the moments of a combinatorial statistic can be simultaneously encoded as the Taylor coefficients of a function that transforms as a Jacobi form. Our use of Jacobi transformations is a novel development in the subject, as previous results on the asymptotic behavior of the Taylor coefficients of Jacobi forms have involved the study of each such coefficient individually using the theory of quasimodular forms and quasimock modular forms.As an application, we find asymptotic series for the moments of the partition rank and crank statistics. Although the coefficients are exponentially large, the error in the series expansions is polynomial, and have the same order as the coefficients of the residual Eisenstein series that are undetectable by the Circle Method. We also prove asymptotic series expansions for the symmetrized rank and crank moments introduced by Andrews and Garvan, respectively. Equivalently, the former gives asymptotic series for the enumeration of Andrews k-marked Durfee symbols.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3