Abstract
AbstractFor a polynomial $f(x)\in\mathbb{Q}[x]$ and rational numbers c, u, we put $f_c(x)\coloneqq f(x)+c$, and consider the Zsigmondy set $\calZ(f_c,u)$ associated to the sequence $\{f_c^n(u)-u\}_{n\geq 1}$, see Definition 1.1, where $f_c^n$ is the n-st iteration of fc. In this paper, we prove that if u is a rational critical point of f, then there exists an Mf > 0 such that $\mathbf M_f\geq \max_{c\in \mathbb{Q}}\{\#\calZ(f_c,u)\}$.
Publisher
Cambridge University Press (CUP)
Reference10 articles.
1. Zur Theorie der Potenzreste;Zsigmondy;Monatsh. Math. Phys.,1892
2. ABC implies primitive prime divisors in arithmetic dynamic;Gratton;Bull. Lond. Math. Soc.,2013
3. Primitive divisors of the expression an − bn in algebraic number fields.;Schinzel;J. Reine Angew. Math,1974
4. Talteoretiske undersøgelser.;Bang;Tidsskrift Mat.,1886
5. On the numerical factors of the arithmetic forms αn ± βn.;Carmichael;Ann. of Math.,1913
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献