Author:
HUGGETT STEPHEN,MOFFATT IAIN
Abstract
AbstractWe take an elementary and systematic approach to the problem of extending the Tutte polynomial to the setting of embedded graphs. Four notions of embedded graphs arise naturally when considering deletion and contraction operations on graphs on surfaces. We give a description of each class in terms of coloured ribbon graphs. We then identify a universal deletion-contraction invariant (i.e., a ‘Tutte polynomial’) for each class. We relate these to graph polynomials in the literature, including the Bollobás–Riordan, Krushkal and Las Vergnas polynomials, and give state-sum formulations, duality relations, deleton-contraction relations, and quasi-tree expansions for each of them.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献