Author:
BONFERT–TAYLOR PETRA,BRIDGEMAN MARTIN,CANARY RICHARD D.,TAYLOR EDWARD C.
Abstract
AbstractWe show that any closed hyperbolic surface admitting a conformal automorphism with “many” fixed points is uniformly quasiconformally homogeneous, with constant uniformly bounded away from 1. In particular, there is a uniform lower bound on the quasiconformal homogeneity constant for all hyperelliptic surfaces. In addition, we introduce more restrictive notions of quasiconformal homogeneity and bound the associated quasiconformal homogeneity constants uniformly away from 1 for all hyperbolic surfaces.
Publisher
Cambridge University Press (CUP)
Reference14 articles.
1. Ein Verschiebungssatz der quasikonformen Abbildung;Deutsche Math.,1944
2. [10] Pansu P. . Quasiisométries des variétés à courbure négative. Thesis (1987).
3. Quasiconformally homogeneous compacta in the complex plane;MacManus;Michigan Math. J.,1998
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献