Quasi-isometries between groups with two-ended splittings

Author:

CASHEN CHRISTOPHER H.,MARTIN ALEXANDRE

Abstract

AbstractWe construct a ‘structure invariant’ of a one-ended, finitely presented group that describes the way in which the factors of its JSJ decomposition over two-ended subgroups fit together. For hyperbolic groups satisfying a very general condition, these invariants completely reduce the problem of classifying such groups up to quasi-isometry to a relative quasi-isometry classification of the factors of their JSJ decomposition. Under some additional assumption, our results extend to more general finitely presented groups, yielding a far-reaching generalisation of the quasi-isometry classification of some 3–manifolds obtained by Behrstock and Neumann.The same approach also allows us to obtain such a reduction for the problem of determining when two hyperbolic groups have homeomorphic Gromov boundaries.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quasi-isometries for certain right-angled Coxeter groups;Groups, Geometry, and Dynamics;2024-02-18

2. On canonical splittings of relatively hyperbolic groups;Israel Journal of Mathematics;2023-03-13

3. Weil-Nachbin Theory for Locally Compact Groups;PROOF;2022-12-08

4. Quasi-isometric rigidity for graphs of virtually free groups with two-ended edge groups;Journal für die reine und angewandte Mathematik (Crelles Journal);2021-12-02

5. Quasi-isometry classification of right-angled Artin groups that split over cyclic subgroups;Groups, Geometry, and Dynamics;2020-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3