Author:
GHIOCA DRAGOS,NGUYEN KHOA D.,TUCKER THOMAS J.
Abstract
AbstractLetKbe a number field or a function field of characteristic 0, letφ∈K(z) with deg(φ) ⩾ 2, and letα∈ ℙ1(K). LetSbe a finite set of places ofKcontaining all the archimedean ones and the primes whereφhas bad reduction. After excluding all the natural counterexamples, we define a subsetA(φ,α) of ℤ⩾0× ℤ>0and show that for all but finitely many (m,n) ∈A(φ,α) there is a prime 𝔭 ∉Ssuch that ord𝔭(φm+n(α)−φm(α)) = 1 andαhas portrait (m,n) under the action ofφmodulo 𝔭. This latter condition implies ord𝔭(φu+v(α)−φu(α)) ⩽ 0 for (u,v) ∈ ℤ⩾0× ℤ>0satisfyingu<morv<n. Our proof assumes a conjecture of Vojta for ℙ1× ℙ1in the number field case and is unconditional in the function field case thanks to a deep theorem of Yamanoi. This paper extends earlier work of Ingram–Silverman, Faber–Granville and the authors.
Publisher
Cambridge University Press (CUP)
Reference26 articles.
1. Zur Theorie der Potenzreste
2. The Galois Theory of Iterates and Composites of Polynomials
3. J. Juul Iterates of generic polynomials and generic rational functions. To appear in Trans. Amer. Math. Soc.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献