Abstract
This paper is a continuation of (F3). In its first part we shall expand and extend the general theory of the earlier paper, while in the second part we specialize to number fields. The theory of resolvents and of the trace form, presented here, complements the more arithmetic theory of module conductors and module resolvents as described elsewhere (cf. (F4)). Both these papers will be applied in work on the connexion, for tame extensions, between Galois module structure of algebraic integers on the one hand, and Artin conductors and root numbers on the other hand (cf. (F5)). The results of the present paper are however not restricted to the tame case and, it is hoped, will subsequently be applied in a more general context.
Publisher
Cambridge University Press (CUP)
Reference11 articles.
1. Resolvents, discriminants, and trace invariants
2. (F4) Fröhlich A. Module conductors and module resolvents (to appear in Proc. London Math. Soc.)
3. The Discriminant Matrices of An Algebraic Number Field
4. Artinsche Führer, Artinsche L-Funktionen und Gaussche Summen über endlich algebraischen Zahlkörpern;Masse;Acta Salmanticensia
5. Discriminants of algebraic number fields
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Algebraic number fields;Journal of Soviet Mathematics;1987-08
2. On Fr�hlich's conjecture for rings of integers of tame extensions;Inventiones Mathematicae;1981-02
3. Structure galoisienne des anneaux d'entiers d'extensions sauvagement ramifiées. I;Annales de l’institut Fourier;1981
4. The class group à la Fröhlich;Integral Representations and Applications;1981
5. The arithmetic theory of local Galois Gauss sums for tame characters;Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences;1980-08-30