Abstract
AbstractThe universal sl2 invariant is an invariant of bottom tangles from which one can recover the colored Jones polynomial of links. We are interested in the relationship between topological properties of bottom tangles and algebraic properties of the universal sl2 invariant. A bottom tangle T is called Brunnian if every proper subtangle of T is trivial. In this paper, we prove that the universal sl2 invariant of n-component Brunnian bottom tangles takes values in a small subalgebra of the n-fold completed tensor power of the quantized enveloping algebra Uh(sl2). As an application, we give a divisibility property of the colored Jones polynomial of Brunnian links.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On Bar-Natan–van der Veen’s perturbed Gaussians;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-01-10
2. The universal sl2 invariant and Milnor invariants;International Journal of Mathematics;2016-10
3. Bing doubling and the colored Jones polynomial;International Journal of Mathematics;2014-07