Author:
GUIRAUD YVES,MALBOS PHILIPPE
Abstract
Craig Squier proved that, if a monoid can be presented by a finite convergent string rewriting system, then it satisfies the homological finiteness condition left-FP3. Using this result, he constructed finitely presentable monoids with a decidable word problem, but that cannot be presented by finite convergent rewriting systems. Later, he introduced the condition of finite derivation type, which is a homotopical finiteness property on the presentation complex associated to a monoid presentation. He showed that this condition is an invariant of finite presentations and he gave a constructive way to prove this finiteness property based on the computation of the critical branchings: Being of finite derivation type is a necessary condition for a finitely presented monoid to admit a finite convergent presentation. This survey presents Squier's results in the contemporary language of polygraphs and higher dimensional categories, with new proofs and relations between them.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,Mathematics (miscellaneous)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献