Recognizable languages of arrows and cospans

Author:

BRUGGINK H. J. SANDER,KÖNIG BARBARA

Abstract

In this article, we generalize Courcelle's recognizable graph languages and results on monadic second-order logic to more general structures.First, we give a category-theoretical characterization of recognizability. A recognizable subset of arrows in a category is defined via a functor into the category of relations on finite sets. This can be seen as a straightforward generalization of finite automata. We show that our notion corresponds to recognizable graph languages if we apply the theory to the category of cospans of graphs.In the second part of the paper, we introduce a simple logic that allows to quantify over the subobjects of a categorical object. Again, we show that, for the category of graphs, this logic is equally expressive as monadic second-order graph logic (msogl). Furthermore, we show that in the more general setting of hereditary pushout categories, a class of categories closely related to adhesive categories, we can recover Courcelle's result that everymsogl-expressible property is recognizable. This is done by giving an inductive translation of formulas of our logic into automaton functors.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3