A formal approach to collaborative modelling and co-simulation for embedded systems

Author:

FITZGERALD J. S.,LARSEN P. G.,PIERCE K. G.,VERHOEF M. H. G.

Abstract

The effective use of model-based formal methods in the development of complex embedded systems requires the integration of discrete-event models of controllers with continuous-time models of their environments. This paper proposes a new approach to the development of such combined models (co-models), in which an initial discrete-event model may include approximations of continuous-time behaviour that can subsequently be replaced by couplings to continuous-time models. An operational semantics of co-simulation allows the discrete and continuous models to run on their respective simulators and managed by a coordinating co-simulation engine. This permits the exploration of the composite co-model's behaviour in a range of operational scenarios. The approach has been realised using the Vienna Development Method (VDM) as the discrete-event formalism, and 20-sim as the continuous-time framework, and has been applied successfully to a case study based on the distributed controller for a personal transporter device.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Hierarchical Design Tool for SystemC AMS;Communications in Computer and Information Science;2024

2. Formal techniques in the safety analysis of software components of a new dialysis machine;Science of Computer Programming;2019-04

3. Engineering Cyber-Physical Swarms with Collaborative Modelling;INCOSE International Symposium;2018-07

4. Collaborative modelling and co-simulation for Transportation Cyber-Physical Systems;Transportation Cyber-Physical Systems;2018

5. Exploring the Cyber-Physical Design Space;INCOSE International Symposium;2017-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3