Type safe incremental rebinding

Author:

ANCONA DAVIDE,GIANNINI PAOLA,ZUCCA ELENA

Abstract

We extend the simply-typed lambda-calculus with a mechanism for dynamic and incremental rebinding of code. Fragments of open code which can be dynamically rebound are values. Differently from standard static binding, which is done on a positional basis, rebinding is done on a nominal basis, that is, free variables in open code are associated with names which do not obey α-equivalence. Moreover, rebinding is incremental, that is, just a subset of names can be rebound, making possible code specialization, and rebinding can even introduce new names. Finally, rebindings, which are associations between names and terms, are first-class values, and can be manipulated by operators such as overriding and renaming. We define a type system in which the type for a rebinding, in addition to specify an association between names and types (similarly to record types), is also annotated. The annotation says whether or not the domain of the rebinding having this type may contain more names than the ones that are specified in the type. We show soundness of the type system.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Reference16 articles.

1. A Fresh Calculus for Name Management

2. Staged computation with names and necessity

3. A lambda-calculus for dynamic binding

4. Ancona D. , Giannini P. and Zucca E. (2013). Reconciling positional and nominal binding. In: Graham-Lengrand S. and Paolini L. (eds.) ITRS'12 - Intersection types and Related Systems. Available at: http://bart.disi.unige.it/bibliography/papers/report/orders:year/author:4.

5. Featherweight Jigsaw — Replacing inheritance by composition in Java-like languages

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incremental Rebinding with Name Polymorphism;Electronic Notes in Theoretical Computer Science;2016-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3