Abstract
AbstractIn this study, we propose an operationalization of the concept of emergence which plays a crucial role in usage-based theories of language. The abstractions linguists operate with are assumed to emerge through a process of generalization over the data language users are exposed to. Here, we use two types of computational learning algorithms that differ in how they formalize and execute generalization and, consequently, abstraction, to probe whether a type of language knowledge that resembles linguistic abstractions could emerge from exposure to raw data only. More specifically, we investigated whether a phone, undisputedly the simplest of all linguistic abstractions, could emerge from exposure to speech sounds using two computational learning processes: memory-based learning and error-correction learning (ECL). Both models were presented with a significant amount of pre-processed speech produced by one speaker. We assessed (1) the consistency or stability of what these simple models learn and (2) their ability to approximate abstract categories. Both types of models fare differently regarding these tests. We show that only ECL models can learn abstractions and that at least part of the phone inventory and its grouping into traditional types can be reliably identified from the input.
Funder
Social Sciences and Humanities Research Council of Canada
Leverhulme Trust
Publisher
Cambridge University Press (CUP)
Subject
Linguistics and Language,Experimental and Cognitive Psychology,Language and Linguistics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献