Direct numerical simulation of backward-facing step flow at and expansion ratio 2

Author:

Pont-Vílchez A.ORCID,Trias F. X.ORCID,Gorobets A.ORCID,Oliva A.ORCID

Abstract

Backward-facing step (BFS) constitutes a canonical configuration to study wall-bounded flows subject to massive expansions produced by abrupt changes in geometry. Recirculation flow regions are common in this type of flow, driving the separated flow to its downstream reattachment. Consequently, strong adverse pressure gradients arise through this process, feeding flow instabilities. Therefore, both phenomena are strongly correlated as the recirculation bubble shape defines how the flow is expanded, and how the pressure rises. In an incompressible flow, this shape depends on the Reynolds value and the expansion ratio. The influence of these two variables on the bubble length is widely studied, presenting an asymptotic behaviour when both parameters are beyond a certain threshold. This is the usual operating point of many practical applications, such as in aeronautical and environmental engineering. Several numerical and experimental studies have been carried out regarding this topic. The existing simulations considering cases beyond the above-mentioned threshold have only been achieved through turbulence modelling, whereas direct numerical simulations (DNS) have been performed only at low Reynolds numbers. Hence, despite the great importance of achieving this threshold, there is a lack of reliable numerical data to assess the accuracy of turbulence models. In this context, a DNS of an incompressible flow over a BFS is presented in this paper, considering a friction Reynolds number ($Re_{\unicode[STIX]{x1D70F}}$) of 395 at the inflow and an expansion ratio 2. Finally, the elongation of the Kelvin–Helmholtz instabilities along the shear layer is also studied.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference38 articles.

1. Pont-Vílchez, A. , Trias, F. X. , Gorobets, A.  & Oliva, A. 2018 Direct numerical simulation results presented in this paper. http://www.cttc.upc.edu/downloads/BFS_Ret395_ER2.

2. Direct numerical simulation of turbulent channel flow up to Reτ=590

3. De Brederode, V.  & Bradshaw, P. 1972 Three-dimensional flow in nominally two-dimensional separation bubbles. I. Flow behind a rearward-facing step. Tech. Rep., IC Aero Rep 72-19, Imperial College, London.

4. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3