Three-dimensional quasi-geostrophic vortex equilibria with -fold symmetry

Author:

Reinaud Jean N.ORCID

Abstract

We investigate arrays of $m$ three-dimensional, unit-Burger-number, quasi-geostrophic vortices in mutual equilibrium whose centroids lie on a horizontal circular ring; or$m+1$ vortices where the additional vortex lies on the vertical ‘central’ axis passing through the centre of the array. We first analyse the linear stability of circular point vortex arrays. Three distinct categories of vortex arrays are considered. In the first category, the $m$ identical point vortices are equally spaced on a circular ring and no vortex is located on the vertical central axis. In the other two categories, a ‘central’ vortex is added. The latter two categories differ by the sign of the central vortex. We next turn our attention to finite-volume vortices for the same three categories. The vortices consist of finite volumes of uniform potential vorticity, and the equilibrium vortex arrays have an (imposed) $m$-fold symmetry. For simplicity, all vortices have the same volume and the same potential vorticity, in absolute value. For such finite-volume vortex arrays, we determine families of equilibria which are spanned by the ratio of a distance separating the vortices and the array centre to the vortices’ mean radius. We determine numerically the shape of the equilibria for $m=2$ up to $m=7$, for each three categories, and we address their linear stability. For the $m$-vortex circular arrays, all configurations with $m\geqslant 6$ are unstable. Point vortex arrays are linearly stable for $m<6$. Finite-volume vortices may, however, be sensitive to instabilities deforming the vortices for $m<6$ if the ratio of the distance separating the vortices to their mean radius is smaller than a threshold depending on $m$. Adding a vortex on the central axis modifies the overall stability properties of the vortex arrays. For $m=2$, a central vortex tends to destabilise the vortex array unless the central vortex has opposite sign and is intense. For $m>2$, the unstable regime can be obtained if the strength of the central vortex is larger in magnitude than a threshold depending on the number of vortices. This is true whether the central vortex has the same sign as or the opposite sign to the peripheral vortices. A moderate-strength like-signed central vortex tends, however, to stabilise the vortex array when located near the plane containing the array. On the contrary, most of the vortex arrays with an opposite-signed central vortex are unstable.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The nonlinear evolution of two surface quasi-geostrophic vortices;Geophysical & Astrophysical Fluid Dynamics;2024-03-03

2. The Dynamics of Jupiter's and Saturn's Weather Layers: A Synthesis After Cassini and Juno;Annual Review of Fluid Mechanics;2024-01-19

3. Time Periodic Doubly Connected Solutions for the 3D Quasi-Geostrophic Model;SIAM Journal on Mathematical Analysis;2023-11-01

4. Finite Froude and Rossby numbers counter-rotating vortex pairs;Journal of Fluid Mechanics;2023-09-22

5. Five Years of Observations of the Circumpolar Cyclones of Jupiter;Journal of Geophysical Research: Planets;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3