Bottom-topography effect on the instability of flows around a circular island

Author:

Rabinovich Michael,Kizner ZivORCID,Flierl Glenn

Abstract

Instabilities of a two-dimensional quasigeostrophic circular flow around a rigid circular wall (island) with radial offshore bottom slope are studied analytically. The basic flow is composed of two concentric, uniform potential-vorticity (PV) rings with zero net vorticity attached to the island. Linear stability analysis for perturbations in the form of azimuthal modes leads to a transcendental eigenvalue equation. The non-dimensional governing parameters are beta (associated with the steepness of the bottom slope, hence taken to be negative), the PV in the inner ring and the radii of the inner and outer rings. This setting up of the problem allows us to derive analytically the eigenvalue equation. We first analyse this equation for weak slopes to understand the asymptotic first-order corrections to the flat-bottom case. For azimuthal modes 1 and 2, it is found that the conical topographic beta effect stabilizes the counterclockwise flows, but destabilizes clockwise flows. For a clockwise flow, the beta effect gives rise to the mode-1 instability, contrary to the flat-bottom case where this mode is always stable. Moreover, however small the slope steepness (beta) is, it leads to the mode-1 instability in a large region in the parameter space. For steep slopes, the beta term in the PV expression may dominate the relative vorticity term, causing stabilization of the flow, as compared to the flat-bottom case, for both directions of the basic flow. When the flow is counterclockwise and the slope steepness is increased, mode 2 turns out to be entirely stable and modes 3, 4 and 5 enlarge their stability regions. In a clockwise flow, when the slope steepness is increased, mode 1 regains its stability in the entire parameter space, and mode 2 becomes more stable than mode 3. The bifurcation of mode 1 from stability to instability is discussed in terms of the Rossby waves at the contours of discontinuity of the basic PV and outside the uniform-PV rings.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference48 articles.

1. On the stability of barotropic prograde and retrograde jets along a bottom slope

2. Numerical simulation of the formation of tripolar vortices by the method of contour dynamics;Makarov;Izv. Atmos. Ocean. Phys.,1996

3. On the trapping of wave energy round islands

4. Simulation of the instability of axisymmetric vortices using the contour dynamics method

5. A qualitative analysis of the causes of the anomalous circulation around oceanic islands;Shtokman;Izv. Atmos. Oceanic Phys.,1966

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3