Uncoupling the effects of aspect ratio, Reynolds number and Rossby number on a rotating insect-wing planform

Author:

Bhat Shantanu S.ORCID,Zhao Jisheng,Sheridan John,Hourigan Kerry,Thompson Mark C.

Abstract

The individual and combined influences of aspect ratio ($A$), Reynolds number ($Re$) and Rossby number ($Ro$) on the leading-edge vortex (LEV) of a rotating wing of insect-like planform are investigated numerically. A previous study from our group has determined the wingspan to be an appropriate length scale governing the large-scale LEV structure. In this study, the $A$ range considered is further extended, to show that this scaling works well as $A$ is varied by a factor of 4 ($1.8\leqslant A\leqslant 7.28$) and over a $Re$ range of two orders of magnitude. The present study also extends this scaling for wings with an offset from the rotation axis, which is typically the case for actual insects and often for experiments. Remarkably, the optimum range of $A$ based on the lift coefficients at different $Re$ coincides with that observed in nature. The scaling based on the wingspan is extended to the acceleration terms of the Navier–Stokes equations, suggesting a modified scaling of $Ro$, which decouples the effects of $A$. A detailed investigation of the flow structures, by increasing $Ro$ in a wide range, reveals the weakening of the LEV due to the reduced spanwise flow, resulting in a reduced lift. Overall, the use of span-based scaling of $Re$ and $Ro$, together with $A$, may help reconcile apparent conflicting trends between observed variations in aerodynamic performance in different sets of experiments and simulations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3