Source and boundary condition effects on unconfined and confined vertically distributed turbulent plumes

Author:

Kaye N. B.ORCID,Cooper P.ORCID

Abstract

Plumes generated by vertically distributed sources of buoyancy have been observed to have substantially lower entrainment coefficients than their equivalent-geometry constant buoyancy flux plumes. Two differences between distributed and localized sources of buoyancy are the presence of a wall shear stress at the source and that non-ideal source conditions are distributed over the whole height of the enclosure for a vertically distributed source. Herein the impact of non-ideal source and boundary conditions on vertically distributed plumes is analysed. It is shown that, at small heights, the plume volume flow rate is significantly influenced by the wall-source volume flux. At larger heights the wall-source buoyancy is greater than the mean plume buoyancy, creating a non-self-similar horizontal buoyancy distribution within the plume. Recent experiments into the behaviour of a vertically distributed source of buoyancy in a confined region have also shown that the plume partially detrains in the stratified region of the enclosure. This detrainment has not been observed for constant buoyancy flux plumes in a confined region. Although models have been proposed to quantify the detrainment process, it is still unclear why vertically distributed buoyancy sources detrain while constant buoyancy flux plumes do not in the same physical geometry. The impact of source and boundary effects on previously published experiments on vertically distributed plumes are reviewed and the possible implications for plume entrainment and detrainment are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3