Abstract
Designing effective control for complex three-dimensional flow fields proves to be non-trivial. Often, intuitive control strategies lead to suboptimal control. To navigate the control space, we use a linear parabolized stability analysis to guide the design of a control scheme for a trailing vortex flow field aft of a NACA0012 half-wing at an angle of attack
$\unicode[STIX]{x1D6FC}=5^{\circ }$
and a chord-based Reynolds number
$Re=1000$
. The stability results show that the unstable mode with the smallest growth rate (fifth wake mode) provides a pathway to excite a vortex instability, whereas the principal unstable mode does not. Inspired by this finding, we perform direct numerical simulations that excite each mode with body forces matching the shape function from the stability analysis. Relative to the uncontrolled case, the controlled flows show increased attenuation of circulation and peak streamwise vorticity, with the fifth-mode-based control set-up outperforming the principal-mode-based set-up. From these results, we conclude that a rudimentary linear stability analysis can provide key insights into the underlying physics and help engineers design effective physics-based flow control strategies.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献