Estimating productivity and nutritive value of Marandu palisadegrass using a proximal canopy reflectance sensor

Author:

Pezzopane José Ricardo MacedoORCID,de Campos Bernardi Alberto Carlos,Bosi Cristiam,Sengling Orlando,Bonani Willian Lucas,Brunetti Henrique Bauab,Santos Patricia Menezes

Abstract

Abstract In intensive livestock production systems, estimating forage production and its nutritive value can assist farmers in optimizing pasture management, stocking rate, and feed supplementation to animals. In this study, we aimed to use vegetation indices, determined using a proximal canopy reflectance sensor, to estimate the forage mass, crude protein content, and nitrogen in live forage of Marandu palisadegrass (Urochloa brizantha). Pasture canopy reflectance was measured at three wavelengths (670, 720, and 760 nm) using a Crop Circle device equipped with an ACS-430 sensor. Total forage mass, plant-part composition, leaf area index (LAI), and crude protein content were assessed during 14 growth cycles in a pasture under four management regimes, comprising different combinations of two N fertilization rates and two irrigation schedules. For each forage assessment, pasture canopy reflectance data were used to calculate the following vegetation indices: normalized difference vegetation index, normalized difference red edge, simple ratio index (SRI), modified simple ratio, and chlorophyll index. In addition, we also performed analyses of the linear and exponential regressions between vegetation indices and total forage mass, leaf + stem mass, leaf mass, LAI, crude protein content, and nitrogen in live forage. The best estimates were achieved for total forage mass, leaf + stem mass, leaf mass, and nitrogen in live forage using SRI (R2 values between 0.72 and 0.79). When estimating pasture productive variables (total forage mass, leaf + stem mass, leaf mass, and LAI) from SRI, the equations showed R2 values between 0.69 (leaf mass) and 0.74 (LAI) and relative errors ranging from 19% to 21%. For each of the water and nitrogen supply conditions evaluated, this index facilitated the monitoring of forage mass time series and nitrogen in live forage and the extraction of this nutrient by the pasture.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3