Abstract
Summary
Numerous technologies have contributed to the recent development of agriculture, especially the advancement in hyperspectral remote sensing (HRS) constituted a revolution in crop monitoring. The widespread use of HRS to obtain crop parameters suggests the need for a review of research advances in this area. HRS offers new theories and methods for studying crop parameters, but much work needs to be done both experimentally and theoretically before we can truly understand the physical and chemical processes that predict these crop parameters. The study focuses on the following elements: 1) The article provides a relatively comprehensive introduction to HRS and how it can be applied to crop monitoring; 2) Current state-of-the-art techniques are summarized and analyzed to inform further advances in crop monitoring; 3) Opportunities and challenges for crop monitoring applications using HRS are discussed, and future research is summarized. Finally, through a comprehensive discussion and analysis, the article proposes new directions for using HRS to study crop characteristics, such as new data mining techniques including deep learning provide opportunities for efficient processing of large amounts of HRS data; combining the temporal and dynamic characteristics of crop parameters and vegetation growth processes will greatly improve the accuracy of crop parameter detection and monitoring; multidata fusion and multiscale data assimilation will become HRS monitoring. Multidata fusion and multiscale data assimilation will become another research hotspot for HRS monitoring of crop parameters.
Publisher
Cambridge University Press (CUP)
Subject
Agronomy and Crop Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献