Starch granule size in grains of hybrid rice with low chalkiness occurrence

Author:

Cao Jialin,Tang Maoyan,Zhang Ruichun,Chen Jiana,Cao Fangbo,Liu Longsheng,Fang Shengliang,Zhang Ming,Huang MinORCID

Abstract

Summary The occurrence of chalkiness has decreased in new hybrid rice cultivars in China. As both chalkiness occurrence and starch granule size are associated with the biosynthesis of starch, we hypothesized that there may be a correlation between chalkiness occurrence and starch granule size, and this may partially explain the decreased chalkiness occurrence in the new hybrid rice cultivars. To test this hypothesis, a field experiment was conducted over eight environments (two years × four sowing dates) with two hybrid rice cultivars: one recently developed with low chalkiness occurrence, Jingliangyou 1468 (JLY1468) and a relatively older cultivar with high chalkiness occurrence, Liangyoupeijiu (LYPJ). Results showed that JLY1468 had a higher cumulative distribution of large-diameter (7.51–19.50 μm) starch granules and a lower grain weight of milled rice compared to LYPJ. As a consequence, mean and relative starch granule diameters were 6% and 21% higher in JLY1468 than in LYPJ, respectively. Although both the chalky grain rate and chalkiness degree were negatively correlated with mean and relative starch granule diameter, they were more closely correlated with the relative granule diameter. These results support our hypothesis regarding the relationship between chalkiness occurrence and starch granule size and suggest that the relative starch granule diameter is a relevant parameter in understanding the occurrence of chalkiness in hybrid rice.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3