Author:
BUGEAUD YANN,KEKEÇ GÜLCAN
Abstract
AbstractWe carry Sprindžuk’s classification of the complex numbers to the field $\mathbb{Q}_{p}$ of $p$-adic numbers. We establish several estimates for the $p$-adic distance between $p$-adic roots of integer polynomials, which we apply to show that almost all $p$-adic numbers, with respect to the Haar measure, are $p$-adic $\tilde{S}$-numbers of order 1.
Publisher
Cambridge University Press (CUP)
Reference12 articles.
1. Über eine Klasseneinteilung der p-adischen Zahlen;Mahler;Mathematica (Leiden),1935
2. Contributions to the Theory of Transcendental Numbers
3. On Sprindžuk’s classification of transcendental numbers;Amou;J. reine angew. Math.,1996
4. Diophantine Approximation on Linear Algebraic Groups