Abstract
AbstractA p-group is called powerful if every commutator is a product of pth powers when p is odd and a product of fourth powers when p=2. In the group algebra of a group G of p-power order over a finite field of characteristic p, the group of normalized units is always a p-group. We prove that it is never powerful except, of course, when G is abelian.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Group algebras whose groups of normalized units have exponent 4;Czechoslovak Mathematical Journal;2018-01-16
2. UNITS IN Fq k (Cp or Cq);International Electronic Journal of Algebra;2015-12-01