Abstract
A Heron triangle is a triangle that has three rational sides $(a,b,c)$ and a rational area, whereas a perfect triangle is a Heron triangle that has three rational medians $(k,l,m)$. Finding a perfect triangle was stated as an open problem by Richard Guy [Unsolved Problems in Number Theory (Springer, New York, 1981)]. Heron triangles with two rational medians are parametrized by the eight curves $C_{1},\ldots ,C_{8}$ mentioned in Buchholz and Rathbun [‘An infinite set of heron triangles with two rational medians’, Amer. Math. Monthly 104(2) (1997), 106–115; ‘Heron triangles and elliptic curves’, Bull. Aust. Math.Soc. 58 (1998), 411–421] and Bácskái et al. [Symmetries of triangles with two rational medians, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.6533, 2003]. In this paper, we reveal results on the curve $C_{4}$ which has the property of satisfying conditions such that six of seven parameters given by three sides, two medians and area are rational. Our aim is to perform an extensive search to prove the nonexistence of a perfect triangle arising from this curve.
Publisher
Cambridge University Press (CUP)
Reference16 articles.
1. Counting Heron triangles with constraints;Stanica;J. Integers,2013
2. Unsolved Problems in Number Theory
3. Elliptic curves and Triangles with three rational medians
4. [1] Bácskái, Z. F. , Buchholz, R. H. , Rathbun, R. L. and Smith, M. J. , Symmetries of triangles with two rational medians, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.6533, (2003).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献