Abstract
AbstractLet$M$be a complete hyperbolic 3-manifold homotopy equivalent to a compact surface$\Sigma $. Let$\Phi $be a proper subsurface of$\Sigma $, whose boundary is sufficiently short in$M$. We show that the union of all Margulis tubes and cusps homotopic into$\Phi $lifts to a uniformly quasiconvex subset of hyperbolic 3-space.
Publisher
Cambridge University Press (CUP)
Reference18 articles.
1. Les géodésiques fermées d'une variété hyperbolique en tant que nœuds
2. K. Ohshika and T. Soma , ‘Geometry and topology of geometric limits I’, Preprint, Osaka/Tokyo, 2010, available at arXiv:1002.4266.
3. The classification of Kleinian surface groups, I: models and bounds
4. W. P. Thurston , ‘The geometry and topology of 3-manifolds’, manuscript, Princeton, 1979, available at http://library.msri.org/books/gt3m.