LOGARITHMIC COEFFICIENTS PROBLEMS IN FAMILIES RELATED TO STARLIKE AND CONVEX FUNCTIONS

Author:

PONNUSAMY SAMINATHANORCID,SHARMA NAVNEET LAL,WIRTHS KARL-JOACHIM

Abstract

Let${\mathcal{S}}$be the family of analytic and univalent functions$f$in the unit disk$\mathbb{D}$with the normalization$f(0)=f^{\prime }(0)-1=0$, and let$\unicode[STIX]{x1D6FE}_{n}(f)=\unicode[STIX]{x1D6FE}_{n}$denote the logarithmic coefficients of$f\in {\mathcal{S}}$. In this paper we study bounds for the logarithmic coefficients for certain subfamilies of univalent functions. Also, we consider the families${\mathcal{F}}(c)$and${\mathcal{G}}(c)$of functions$f\in {\mathcal{S}}$defined by$$\begin{eqnarray}\text{Re}\biggl(1+{\displaystyle \frac{zf^{\prime \prime }(z)}{f^{\prime }(z)}}\biggr)>1-{\displaystyle \frac{c}{2}}\quad \text{and}\quad \text{Re}\biggl(1+{\displaystyle \frac{zf^{\prime \prime }(z)}{f^{\prime }(z)}}\biggr)<1+{\displaystyle \frac{c}{2}},\quad z\in \mathbb{D},\end{eqnarray}$$for some$c\in (0,3]$and$c\in (0,1]$, respectively. We obtain the sharp upper bound for$|\unicode[STIX]{x1D6FE}_{n}|$when$n=1,2,3$and$f$belongs to the classes${\mathcal{F}}(c)$and${\mathcal{G}}(c)$, respectively. The paper concludes with the following two conjectures:If$f\in {\mathcal{F}}(-1/2)$, then$|\unicode[STIX]{x1D6FE}_{n}|\leq 1/n(1-(1/2^{n+1}))$for$n\geq 1$, and$$\begin{eqnarray}\mathop{\sum }_{n=1}^{\infty }|\unicode[STIX]{x1D6FE}_{n}|^{2}\leq {\displaystyle \frac{\unicode[STIX]{x1D70B}^{2}}{6}}+{\displaystyle \frac{1}{4}}~\text{Li}_{2}\biggl({\displaystyle \frac{1}{4}}\biggr)-\text{Li}_{2}\biggl({\displaystyle \frac{1}{2}}\biggr),\end{eqnarray}$$where$\text{Li}_{2}(x)$denotes the dilogarithm function.If$f\in {\mathcal{G}}(c)$, then$|\unicode[STIX]{x1D6FE}_{n}|\leq c/2n(n+1)$for$n\geq 1$.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference23 articles.

1. Quelques problèmes extrèmaux dans les classes des fonctions 𝛼-angulairement étoilées;Stankiewicz;Ann. Univ. Mariae Curie-Slodowska Sect. A,1966

2. Inverse coefficients for (𝛼, 𝛽)-convex functions;Prokhorov;Ann. Univ. Mariae Curie-Sklodowska Sect. A,1981

3. Univalent α-Spiral Functions

4. Differential Subordinations

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3