Abstract
Let${\mathcal{S}}$be the family of analytic and univalent functions$f$in the unit disk$\mathbb{D}$with the normalization$f(0)=f^{\prime }(0)-1=0$, and let$\unicode[STIX]{x1D6FE}_{n}(f)=\unicode[STIX]{x1D6FE}_{n}$denote the logarithmic coefficients of$f\in {\mathcal{S}}$. In this paper we study bounds for the logarithmic coefficients for certain subfamilies of univalent functions. Also, we consider the families${\mathcal{F}}(c)$and${\mathcal{G}}(c)$of functions$f\in {\mathcal{S}}$defined by$$\begin{eqnarray}\text{Re}\biggl(1+{\displaystyle \frac{zf^{\prime \prime }(z)}{f^{\prime }(z)}}\biggr)>1-{\displaystyle \frac{c}{2}}\quad \text{and}\quad \text{Re}\biggl(1+{\displaystyle \frac{zf^{\prime \prime }(z)}{f^{\prime }(z)}}\biggr)<1+{\displaystyle \frac{c}{2}},\quad z\in \mathbb{D},\end{eqnarray}$$for some$c\in (0,3]$and$c\in (0,1]$, respectively. We obtain the sharp upper bound for$|\unicode[STIX]{x1D6FE}_{n}|$when$n=1,2,3$and$f$belongs to the classes${\mathcal{F}}(c)$and${\mathcal{G}}(c)$, respectively. The paper concludes with the following two conjectures:∙If$f\in {\mathcal{F}}(-1/2)$, then$|\unicode[STIX]{x1D6FE}_{n}|\leq 1/n(1-(1/2^{n+1}))$for$n\geq 1$, and$$\begin{eqnarray}\mathop{\sum }_{n=1}^{\infty }|\unicode[STIX]{x1D6FE}_{n}|^{2}\leq {\displaystyle \frac{\unicode[STIX]{x1D70B}^{2}}{6}}+{\displaystyle \frac{1}{4}}~\text{Li}_{2}\biggl({\displaystyle \frac{1}{4}}\biggr)-\text{Li}_{2}\biggl({\displaystyle \frac{1}{2}}\biggr),\end{eqnarray}$$where$\text{Li}_{2}(x)$denotes the dilogarithm function.∙If$f\in {\mathcal{G}}(c)$, then$|\unicode[STIX]{x1D6FE}_{n}|\leq c/2n(n+1)$for$n\geq 1$.
Publisher
Cambridge University Press (CUP)
Reference23 articles.
1. Quelques problèmes extrèmaux dans les classes des fonctions 𝛼-angulairement étoilées;Stankiewicz;Ann. Univ. Mariae Curie-Slodowska Sect. A,1966
2. Inverse coefficients for (𝛼, 𝛽)-convex functions;Prokhorov;Ann. Univ. Mariae Curie-Sklodowska Sect. A,1981
3. Univalent α-Spiral Functions
4. Differential Subordinations
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献