Abstract
AbstractLet H be the Hermite operator
$-\Delta +|x|^2$
on
$\mathbb {R}^n$
. We prove a weighted
$L^2$
estimate of the maximal commutator operator
$\sup _{R>0}|[b, S_R^\lambda (H)](f)|$
, where
$ [b, S_R^\lambda (H)](f) = bS_R^\lambda (H) f - S_R^\lambda (H)(bf) $
is the commutator of a BMO function b and the Bochner–Riesz means
$S_R^\lambda (H)$
for the Hermite operator H. As an application, we obtain the almost everywhere convergence of
$[b, S_R^\lambda (H)](f)$
for large
$\lambda $
and
$f\in L^p(\mathbb {R}^n)$
.
Publisher
Cambridge University Press (CUP)