A minimal model of parallel electric field generation in a transversely inhomogeneous plasma

Author:

Tsiklauri David

Abstract

AbstractThe generation of parallel electric fields by the propagation of ion cyclotron waves (with frequency 0.3 ωci) in the plasma with a transverse density inhomogeneity was studied. Using two-fluid, cold plasma linearised equations, it was shown for the first time that, in this particular context, E generation can be understood by an analytic equation that couples E to the transverse electric field of the driving ion cyclotron wave. It was proven that the minimal model required to reproduce the previous kinetic simulation results of E generation [Tsiklauri et al 2005, Génot et al 2004] is the two-fluid, cold plasma approximation in the linear regime. By considering the numerical solutions it was also shown that the cause of E generation is the electron and ion flow separation induced by the transverse density inhomogeneity. We also investigate how E generation is affected by the mass ratio and found that amplitude attained by E decreases linearly as inverse of the mass ratio mi/me. For realistic mass ratio of mi/me=1836, such empirical scaling law, within a time corresponding to 3 periods of the driving ion cyclotron wave, is producing E=14 Vm−1 for solar coronal parameters. Increase in mass ratio does not have any effect on final parallel (magnetic field aligned) speed attained by electrons. However, parallel ion velocity decreases linearly with inverse of the mass ratio mi/me. These results can be interpreted as following: (i) ion dynamics plays no role in the E generation; (ii) E ∝ 1/mi scaling is caused by the fact that ωd = 0.3 ωci ∝ 1/mi is decreasing with the increase of ion mass, and hence the electron fluid can effectively “short-circuit” (recombine with) the slowly oscillating ions, hence producing smaller E.

Publisher

Cambridge University Press (CUP)

Subject

Astronomy and Astrophysics,Space and Planetary Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3