Abstract
AbstractKnowledge of lithium, beryllium, and boron abundances in stars of the Galactic halo and disk plays a major role in our understanding of Big Bang nucleosynthesis, cosmic-ray physics, and stellar interiors. 9Be and 10B are believed to originate entirely from spallation reactions in the interstellar medium (ISM) between α-particles and protons and heavy nuclei like carbon, nitrogen, and oxygen (CNO), whereas 11B may have an extra production channel via neutrino-spallation. Beryllium and boron are both observationally challenging, with their main resonant doublets falling respectively at 313 nm and at 250 nm. The advent of 8-10m class telescopes equipped with highly sensitive (in the near-UV/blue) spectrographs has opened up a new era of Be abundance studies. Here, I will review and discuss the most interesting results of recent observational campaigns in terms of formation and evolution of these two light elements.
Publisher
Cambridge University Press (CUP)
Subject
Astronomy and Astrophysics,Space and Planetary Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献