Foehn winds influence surface ablation on Glaciar Perito Moreno, southern Patagonian icefield

Author:

Minowa MasahiroORCID,Skvarca Pedro,Fujita KojiORCID

Abstract

The southern Patagonian glaciers are known for having extremely high ablation rates. Foehn winds are one of the suspected causes, however, their influence on the annual ablation, their interannual variations, and their relationship with climate change is not well understood. We analysed the in-situ meteorological data from 2003–2020 recorded at Glaciar Perito Moreno. Daily temperature lapse rates varied substantially, from −7.8°C km−1 to 10.4°C km−1, due to foehn, fog, and katabatic winds. We find that, on average, foehn events occurred 1073 hours per year, and accounted for 20% of the annual surface ablation. This increase in surface ablation rates during foehn events occurs as a result of the enhanced sensible heat flux and net shortwave radiation. The downglacier-directed foehn winds warm the air mass over the glacier, but because of the high humidity of the foehn here, they often release latent heat by condensation. Variations in the Amundsen Sea Low influence foehn occurrence by modulating the westerly winds, which is related to the hemispherical ocean and atmospheric variability. Our results show that the local climate play an important role in the surface melting of Patagonian glaciers.

Funder

Japan Society for the Promotion of Science

Publisher

Cambridge University Press (CUP)

Reference54 articles.

1. Foehn winds link climate-driven warming to ice shelf evolution in Antarctica;Cape;Journal of Geophysical Research: Atmospheres,2015

2. Extreme precipitation and climate gradients in Patagonia revealed by high-resolution regional atmospheric climate modeling;Lenaerts;Journal of Climate,2014

3. Intraseasonal teleconnections leading to heat waves in central Chile;Jacques-Coper;International Journal of Climatology,2021

4. Modeling past and future surface mass balance of the Northern Patagonia Icefield;Schaefer;Journal of Geophysical Research: Earth Surface,2013

5. Climate-change impact on the 20th-century relationship between the Southern Annular Mode and global mean temperature;Wang;Scientific Reports,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3