Abstract
We study differential operators on an affine algebraic variety, especially a hypersurface, in the context of Nakai’s Conjecture. We work over a field k of characteristic zero. Let X be a reduced affine algebraic variety over k and let A be its coordinate ring. Let be the A-module of differential operators of A over k of order ≤ n. Nakai’s Conjecture asserts that if is generated by for every n ≥ 2 then A is regular. In 1973 Mount and Villamayor [6] proved this in the case when X is an irreducible curve. In the general case no progress seems to have been made on the conjecture, except for a result of Brown [2], where the assertion is proved under an additional hypothesis. An interesting result proved by Becker [1] and Rego [8] says that Nakai’s Conjecture implies the Conjecture of Zariski-Lipman, which is still open in the general case and which asserts that if the module of k-derivations of A is A-projective then A is regular.
Publisher
Cambridge University Press (CUP)
Reference14 articles.
1. Remarks on a conjecture of Nakai
2. Éléments de Géométrie Algébrique;Grothendieck;Publ. Math. IHES,1967
3. On a conjecture of Y. Nakai;Mount;Osaka J. Math,1973
4. Free Derivation Modules on Algebraic Varieties
5. Remarks on differential operators on algebraic varieties;Rego;Osaka J. Math,1977
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献