Interannual Variability of the Wind-Wave Regime Parameters in the Black Sea

Author:

Lishaev P. N.,Knysh V. V.,Korotaev G. K., , ,

Abstract

Purpose. The investigation is aimed at increasing accuracy of the temperature field reconstruction in the Black Sea upper layer. For this purpose, satellite observations of the sea surface temperature and the three-dimensional fields of temperature (in the 50–500 m layer) and salinity (in the 2.5–500 m layer) pseudo-measurements, previously calculated by the altimetry and the Argo floats data, were jointly assimilated in the Marine Hydrophysical Institute model. Methods and Results. Assimilation of the sea surface temperature satellite observations is the most effective instrument in case the discrepancies between the sea surface and the model temperatures are extrapolated over the upper mixed layer depth up to its lower boundary. Having been analyzed, the temperature profiles resulted from the forecast calculation for 2012 and from the Argo float measurements made it possible to obtain a simple criterion (bound to the model grid) for determining the upper mixed layer depth, namely the horizon on which the temperature gradient was less or equal to ≤ 0.017 °C/m. Within the upper mixed layer depth, the nudging procedure of satellite temperature measurements with the selected relaxation factor and the measurement errors taken into account was used in the heat transfer equation. The temperature and salinity pseudo-measurements were assimilated in the model by the previously proposed adaptive statistics method. To test the results of the sea surface temperature assimilation, the Black Sea hydrophysical fields were reanalyzed for 2012. The winter-spring period (January – April, December) is characterized by the high upper mixed layer depths, well reproducible by the Pacanowski – Philander parameterization, and also by the low values (as compared to the measured ones) of the basin-averaged monthly mean square deviations of the simulated temperature fields. The increased mean square deviations in July – September are explained by absence of the upper mixed layer in the temperature profiles measured by the Argo floats that is not reproduced by the Pacanowski – Philander parameterization. Conclusions. The algorithm for assimilating the sea surface temperature together with the profiles of the temperature and salinity pseudo-measurements reconstructed from the altimetry data was realized. Application of the upper mixed layer depths estimated by the temperature vertical profiles made it possible to correct effectively the model temperature by the satellite-derived sea surface temperature, especially for a winter-spring period. It permitted to reconstruct the temperature fields in the sea upper layer for 2012 with acceptable accuracy.

Publisher

FSBSI MHI

Subject

Geophysics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3