Studying the Fluxes of the Marine Ecosystem Components from the Northwestern Shelf to the Deep Part of the Black Sea

Author:

Dorofeyev V. L.,Sukhikh L. I., ,

Abstract

Purpose. The study represents analysis of the features of the Black Sea ecosystem components transfer from the northwestern shelf to the deep-sea part and its dependence on circulation in the sea upper layer. Methods and Results. The fluxes of water mass, nutrients and bioproduction from the shelf zone to the deep part of the sea were calculated using the current fields and biogeochemical ones resulted from the reanalysis, which, in its turn, was carried out due to the Black Sea ecosystem model including assimilation of remote sensing data both in the numerical circulation model and in the biogeochemical block. Numerical modeling permitted to calculate the fluxes through three sections that bound the shelf zone (by the capes Kaliakra and Chersonesus, and along the 200 m isobath). Behavior of the RIM Current jet and, consequently, direction and magnitude of the flows through the boundaries of the northwestern shelf depend on the wind stress vorticity over the western part of the Black Sea. The type of circulation with the intense RIM Current jet pressed to the shelf edge, is characterized by the pattern of distribution of the inorganic nitrogen and phytoplankton surface concentration as a narrow strip of its high values along the Black Sea western and partially southern coasts. When the RIM Current jet is weak or moves from the shelf edge (that corresponds to the low values of the wind stress vorticity) the increased concentration values are located on the northwestern shelf. Conclusions. Direction, magnitude and character of horizontal distribution of the nutrient and bioproduction fluxes are determined mainly by circulation in the sea upper layer. The magnitude of these flows is significantly affected by difference between the nutrient and bioproduction concentrations in the shelf zone and in the deep part of the Black Sea.

Publisher

FSBSI MHI

Subject

Geophysics,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3