Comparación del desempeño de una red neural artificial y regresión lineal múltiple en la predicción de la actividad biológica de análogos de la cocaína a partir de descriptores moleculares

Author:

Puerta LuisORCID,Labrador HenryORCID,Arnías MarioORCID

Abstract

El objetivo de la presente investigación, fue comparar el desempeño de las redes neurales artificiales con la regresión lineal múltiple en la predicción de la actividad biológica de los análogos de la cocaína a partir de descriptores moleculares. Para esto, se seleccionó un conjunto de 14 descriptores moleculares agrupados en descriptores químicos cuánticos y descriptores de la estructura tridimensional de la molécula y se calcularon sus valores de forma teórica, para 65 estructuras análogas de la cocaína, realizándose luego la construcción del modelo de redes neurales artificiales y regresión lineal múltiple, para la predicción de la actividad biológica expresada como afinidad (IC50). Se encontró que las redes neurales artificiales presentaron un R2 de 0,8651, mientras que la regresión múltiple lineal presentó un valor de R2 de 0,039, lo que indica que las redes neurales artificiales tienen un mejor desempeño que la regresión múltiple lineal en la predicción de la actividad biológica de los análogos de la cocaína a partir de los descriptores moleculares seleccionados, y que el efecto de los descriptores sobre la actividad biológica es de naturaleza no lineal.

Publisher

University of Carabobo

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3