Annual Summer Submersed Macrophyte Standing Stocks Estimated From Long-Term Monitoring Data in the Upper Mississippi River

Author:

Drake Deanne C.1,Lund Eric M.2ORCID,Kreiling Rebecca M.3ORCID

Affiliation:

1. D.C. Drake Wisconsin Department of Natural Resources, Office of Great Waters, USGS Upper Midwest Environmental Science Center, 2630 Fanta Reed Rd, La Crosse, Wisconsin 54603

2. E.M. Lund Minnesota Department of Natural Resources, Lake City Field Station, 1801 S. Oak Street, Lake City, Minnesota 55041

3. R.M. Kreiling U.S. Geological Survey Upper Midwest Environmental Science Center, 2630 Fanta Reed Road, La Crosse, Wisconsin 54603

Abstract

Abstract System-scale restoration efforts within the Upper Mississippi River National Wildlife and Fish Refuge have included annual monitoring of submersed aquatic vegetation (SAV) since 1998 in four representative reaches spanning ∼ 440 river kilometers. We developed predictive models relating monitoring data (site-scale SAV abundance indices) to diver-harvested SAV biomass, used the models to back-estimate annual standing stock biomass between 1998 and 2018, and compared biomass estimates with previous abundance measures. We modeled two morphologically distinct groups of SAV with differing sampling efficiencies and estimated each separately: the first category included only wild celery Vallisneria americana, which has long, unbranched leaves and dominates lotic environments, while the second category included 17 branched morphology species (e.g., hornwort Ceratophyllum demersum and Canadian water weed Elodea canadensis) and dominates lentic environments. Wild celery accounted for approximately half of total estimated total biomass in the four reaches, combined branched species accounted for half, and invasive species (Eurasian watermilfoil Myriophyllum spicatum and curly-leaf pondweed Potamogeton crispus), a fraction of the branched species, accounted for < 1.5%. Site-scale SAV estimates ranged from 0 to 535 g·m−2 (dry mass). We observed increases in biomass in most areas between 1998 and 2009 and substantial increases (e.g., from < 10 g·m−2 to ∼ 125 g·m−2) in wild celery in extensive impounded areas between 2002 and 2007. Analyses also indicate a transitional period in 2007–2010 during which changes in biomass trajectories were evident in all reaches and included the start of a 9-y, ∼ 70% decrease in wild celery biomass in the southernmost impounded area. Biomass estimates provided new insights and illustrated scales of change that were not previously apparent using traditional metrics. The ability to estimate biomass from Long Term Resource Monitoring data improves conservation efforts through better understanding of changes in habitat and food resources for biota, improved goal setting for restoration projects and improved quantification of SAV-mediated structural effects such as anchoring of sediments and feedbacks with water quality.

Publisher

U.S. Fish and Wildlife Service

Subject

Nature and Landscape Conservation,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3