Temporal Trends in Body Condition of Arctic Geese Wintering in the Mississippi Alluvial Valley

Author:

Massey Ethan R.12,Carlson Lindsay G.13,Osborne Douglas C.1

Affiliation:

1. Division of Agriculture, University of Arkansas, Monticello, Arkansas 71655

2. Present address of E.R. Massey: Ducks Unlimited, Inc., St. Charles, Arkansas 72140

3. Present address of L.G. Carlson: Gulf of Maine Research Institute, Portland, Maine 04101

Abstract

Abstract Midcontinent populations of arctic nesting geese (hereafter, arctic geese), including greater white-fronted geese Anser albifrons frontalis, lesser snow geese Anser caerulescens caerulescens, and Ross's geese Anser rossii, have increased in abundance and shifted their winter distribution in recent decades. Consequently, the number of arctic geese wintering in the Mississippi Alluvial Valley (MAV) has increased since the 1980s. Stored endogenous nutrients are critically important to the life cycle of arctic geese as the geese use these stored nutrients to complete long-distance migration events, survive harsh winters, and supplement nutrients needed for reproduction. This study tracked temporal changes in body condition of arctic geese during the wintering period. We collected arctic geese from October–February 2015–2016 and 2016–2017 in eastern Arkansas. We used proximate analysis to determine size of lipid and protein stores as an index of body condition. Protein stores were more stable through time than lipids, but we observed a slight increase in all species as winter progressed. Mean lipid stores were dynamic and were highest in November and lowest in February. Greater white-fronted geese arrived earliest to the MAV and experienced an increase in endogenous lipid stores during early winter when high-energy food resources were most abundant. Conversely, snow and Ross's geese arrived to the MAV later and did not appear to increase their lipid stores upon arrival. All three species experienced a decline in stored lipid mass as winter progressed; a combination of factors such as resource depletion, a shift in dietary needs, physiological factors, hunting pressure, and increased energetic demands may have driven the decline. An improved understanding of the role that “nontraditional” wintering grounds exert on the nutrient dynamics of arctic geese may aid in the management of growing and shifting populations.

Publisher

U.S. Fish and Wildlife Service

Subject

Nature and Landscape Conservation,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3