Differentiating Footprints of Sympatric Rodents in Coastal Dune Communities: Implications for Imperiled Beach Mice

Author:

Greene Daniel U.1,Oddy Donna M.2,Gore Jeffery A.1,Gillikin Michael N.1,Evans Emily1,Gann Shanon L.2,Leone Erin H.3

Affiliation:

1. D.U. Greene, * J.A. Gore, M.N. Gillikin, E. Evans Florida Fish and Wildlife Conservation Commission, 3911 Highway 2321, Panama City, Florida 32409Present address of D.U. Greene: Weyerhaeuser Company, P.O. Box 2288, Columbus, Mississippi 39704Present address of E. Evans: Florida Fish and Wildlife Conservation Commission, 3377 East U.S. Highway 90, Lake City, Florida 32055

2. D.M. Oddy, S.L. Gann Integrated Mission Support Services, NASA Ecological Program, Kennedy Space Center, Florida 32899Present address of S.L. Gann: Brevard Zoo, Sea Turtle Healing Center, 8225 North Wickham Road, Melbourne, Florida 32940

3. E.H. Leone Florida Fish and Wildlife Conservation Commission, 1105 Southwest Williston Road, Gainesville, Florida 32601

Abstract

Abstract Identifying techniques for conducting frequent, effective, and inexpensive monitoring of small mammals can be challenging. Traditional approaches such as livetrapping can be laborious, expensive, detrimental to animal health, and ineffective. Passive approaches such as tracking (e.g., from tracks on the ground or footprints collected at a tracking station) have been shown to lessen those burdens, but a problem with tracking, particularly for rodents, is the uncertainty in identifying species from footprints. To address the need for a more accurate method of identifying small mammal tracks, we measured footprints from live-captured rodents and developed a classification tree for distinguishing between subspecies and species using footprint widths treated as having known or unknown identification. We captured rodents within or near the coastal dunes of Florida and Alabama with a focus on areas occupied by threatened and endangered beach mice Peromyscus polionotus subspp., whose populations warrant regular monitoring but whose tracks are not easily distinguished from those of some sympatric species. We measured 6,996 front and hind footprints from 540 individuals across eight species. The overall accuracy of our classification tree was 82.6% and we achieved this using only the front footprint width. Footprint width cutoffs for species identification were < 5.5 mm for house mice Mus musculus, 5.5–6.7 mm for beach mice, and 6.7–8.3 mm for cotton mice Peromyscus gossypinus. We were most successful in confirming the identity of beach mice: we correctly classified approximately 94% of beach mice, while we misclassified fewer than 6% as house mice and fewer than 1% as cotton mice. When we input a beach mouse individual into the classification tree as of an unknown species, we correctly identified 78.1% of individuals as beach mice from their tracks, and most incorrect identifications were of house mouse tracks. Our study demonstrates that researchers can identify sympatric rodent species in coastal dune communities from tracks using quantitative classification based on footprint width. Accurate identification of beach mice or other imperiled species from tracks has important management implications. Not only can wildlife managers determine the presence of a species accurately, but they can monitor populations with considerably less effort than livetrapping requires. Although our study was specific to coastal dune communities, our methods could be adapted for the creation of a classification tree for identifying tracks from suites of species in other areas.

Publisher

U.S. Fish and Wildlife Service

Subject

Nature and Landscape Conservation,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3