Deriving Habitat Models for Northern Long-Eared Bats from Historical Detection Data: A Case Study Using the Fernow Experimental Forest

Author:

Ford W. Mark1,Silvis Alexander2,Rodrigue Jane L.3,Kniowski Andrew B.2,Johnson Joshua B.4

Affiliation:

1. W.M. Ford U.S. Geological Survey, Virginia Cooperative Fish and Wildlife Research Unit (0321), Virginia Polytechnic Institute and State University, 310 W. Campus Drive, Blacksburg, Virginia 24061

2. A. Silvis, A. Kniowski Department of Fish and Wildlife Conservation (0321), Virginia Polytechnic Institute and State University, 310 W. Campus Drive, Blacksburg, Virginia 24061

3. J.L. Rodrigue U.S. Forest Service, Northern Research Station, Princeton, West Virginia, 24740Present address: METI Inc., 230 Sunny Ridge Road, Pearisburg, Virginia 24134

4. J.B. Johnson Pennsylvania Game Commission, 2001 Elmerton Avenue, Harrisburg, Pennsylvania 17110

Abstract

Abstract The listing of the northern long-eared bat (Myotis septentrionalis) as federally threatened under the Endangered Species Act following severe population declines from white-nose syndrome presents considerable challenges to natural resource managers. Because the northern long-eared bat is a forest habitat generalist, development of effective conservation measures will depend on appropriate understanding of its habitat relationships at individual locations. However, severely reduced population sizes make gathering data for such models difficult. As a result, historical data may be essential in development of habitat models. To date, there has been little evaluation of how effective historical bat presence data, such as data derived from mist-net captures, acoustic detection, and day-roost locations, may be in developing habitat models, nor is it clear how models created using different data sources may differ. We explored this issue by creating presence probability models for the northern long-eared bat on the Fernow Experimental Forest in the central Appalachian Mountains of West Virginia using a historical, presence-only data set. Each presence data type produced outputs that were dissimilar but that still corresponded with known traits of the northern long-eared bat or are easily explained in the context of the particular data collection protocol. However, our results also highlight potential limitations of individual data types. For example, models from mist-net capture data only showed high probability of presence along the dendritic network of riparian areas, an obvious artifact of sampling methodology. Development of ecological niche and presence models for northern long-eared bat populations could be highly valuable for resource managers going forward with this species. We caution, however, that efforts to create such models should consider the substantial limitations of models derived from historical data, and address model assumptions.

Publisher

U.S. Fish and Wildlife Service

Subject

Nature and Landscape Conservation,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3