Quantum-Resistant Forward-Secure Digital Signature Scheme Based on q-ary Lattices

Author:

Jurkiewicz MariuszORCID

Abstract

In this paper, we design and consider a new digital signature scheme with an evolving secret key, using random q-ary lattices as its domain. It is proved that, in addition to offering classic eu-cma security, the scheme is existentially forward unforgeable under an adaptive chosen message attack (fu-cma). We also prove that the secret keys are updated without revealing anything about any of the keys from the prior periods. Therefore, we design a polynomial-time reduction and use it to show that the ability to create a forgery leads to a feasible method of solving the well-known small integer solution (SIS) problem. Since the security of the scheme is based on computational hardness of a SIS problem, it turns out to be resistant to both classic and quantum methods. In addition, the scheme is based on the "Fiat-Shamir with aborts" approach that foils a transcript attack. As for the key-updating mechanism, it is based on selected properties of binary trees, with the number of leaves being the same as the number of time periods in the scheme. Forward security is gained under the assumption that one out of two hash functions is modeled as a random oracle.

Publisher

National Institute of Telecommunications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3