Optimal Spectrum Sensor Assignment in Multi-channel Multi-user Cognitive Radio Networks

Author:

K. S. Nandini,Hariprasad S. A.

Abstract

Accurate detection of spectrum holes is the most important and critical task in any cognitive radio (CR) communication system. When a single spectrum sensor is assigned to detect a specific primary channel, then the detection may be unreliable because of noise, random multipath fading and shadowing. Also, even when the primary channel is invisible at the CR transmitter, it may be visible at the CR receiver (the hidden primary channel problem). With a single sensor per channel, a high and consistently uniform level of sensitivity is required for reliable detection. These problems are solved by deploying multiple heterogeneous sensors at distributed locations. The proposed spectrum hole detection method uses cooperative sensing, where the challenge is to properly assign sensors to different primary channels in order to achieve the best reliability, a minimum error rate and high efficiency. Existing methods use particle swarm optimization, the ant colony system, the binary firefly algorithm, genetic algorithms and non-linear mixed integer programming. These methods are complex and require substantial pre-processing. The aim of this paper is to provide a simpler solution by using simpler binary integer programming for optimal assignment. Optimal assignment minimizes the probability of interference which is a non-linear function of decision variables. We present an approach used to linearize the objective function. Since multiple spectrum sensors are used, the optimal constrained assignment minimizes the maximum of interferences. While performing the optimization, the proposed method also takes care of the topological layout concerned with channel accessibility. The proposed algorithm is easily scalable and flexible enough to adapt to different practical scenarios.

Publisher

National Institute of Telecommunications

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3