Spline-Extrapolation Method in Traffic Forecasting in 5G Networks

Author:

Strelkovskaya IrinaORCID,Solovskaya IrinaORCID,Makoganiuk AnastasiyaORCID

Abstract

This paper considers the problem of predicting self-similar traffic with a significant number of pulsations and the property of long-term dependence, using various spline functions. The research work focused on the process of modeling self-similar traffic handled in a mobile network. A splineextrapolation method based on various spline functions (linear, cubic and cubic B-splines) is proposed to predict selfsimilar traffic outside the period of time in which packet data transmission occurs. Extrapolation of traffic for short- and long-term forecasts is considered. Comparison of the results of the prediction of self-similar traffic using various spline functions has shown that the accuracy of the forecast can be improved through the use of cubic B-splines. The results allow to conclude that it is advisable to use spline extrapolation in predicting self-similar traffic, thereby recommending this method for use in practice in solving traffic prediction-related problems.

Publisher

National Institute of Telecommunications

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

Reference22 articles.

1. [1] 3GPP "Study on Scenarios and Requirements for Next Generation Access Technologies", ETSI TR 38.913, V14.3.0, 2017 [Online]. Available: https://www.etsi.org/deliver/etsi tr/138900 138999/ 138913/14.02.0060/tr 138913v140200p.pdf

2. [2] 3GPP "Study on Architecture for Architecture for Next Generation System", TR 23.799 V14.0.0, 2016 [Online]. Available: https://portal.3gpp.org/desktopmodules/Specifications/ SpecificationDetails.aspx?specificationId=3045

3. [3] V. V. Krylov and S. S. Samohvalova, Teoriya teletrafika i ee prilozheniya (Teletraffic Theory and Its Applications). St. Petersburg: BHV-Petersburg, 2005, p. 288 (in Russian).

4. [4] O. I. Sheluhin, A. V. Osin, and S. M. Smolski, Samopodobie i Fraktaly. Telekommunikatsionnye Prilozheniya (Self-Similarity and Fractals. Telecommunication Applications). Moscow: Fizmatlit, 2008 (in Russian).

5. [5] I. V. Strelkovskaya, I. N. Solovskaya, N. V. Severin, and S. A. Paskalenko, "Spline approximation-based restoration for selfsimilar traffic", Eastern-Eur. J. of Enterprise Technol., vol. 3/4 (87), pp. 45-50, 2017 (doi: 10.15587/1729-4061.2017.102999).

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3