Utilizing Dip-Coating to Fabricate Gate Dielectric and Semiconductor for Thin-Film Transistors

Author:

Kim Yongwan,Ha Young-Geun

Abstract

The potential applications of advanced electronic materials in large-area, printable, and flexible electronics have generated significant interest. However, creating high-performance, low-voltage thin-film transistors (TFTs) for these applications remains difficult due to a lack of advanced gate dielectric and semiconductor materials that meet both ease-of-fabrication requirements and high electrical performance. In this study, we present high-performance gate dielectric thin-films, which were fabricated using a facile solution-based technique, and then employed to realize low operating voltage organic and metal oxide semiconductor-based thin-film transistors. The high-k oxide gate dielectrics were produced via a simple dip-coating method, resulting in the formation of thin-oxide layers. These novel oxide gate dielectrics demonstrated exceptional dielectric properties, with large capacitances (up to 430 nF/ cm2), low-level leakage current densities (< 3 × 10-8A/cm2 at 4 V), featureless morphology (rms roughness < 0.36 nm), and high transparency (> 85%). Consequently, these dip-coated gate dielectrics can be incorporated into thin-film transistors, utilizing pentacene as p-type organic semiconductors. Furthermore, by employing dip-coating, indium oxide and indium-gallium-zinc oxide can be utilized as n-type inorganic semiconductors, allowing for the fabrication of low-voltage operation and high-performance inorganic TFTs. The resulting TFTs functioned at ultralow voltages (< ± 2 V) and achieved high transistor performance (hole mobility: 0.28 cm2V-1·s-1, electron mobility: ~2.0 cm2V-1·s-1 and on/off current ratio >105).

Funder

Kyonggi University

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3