Structure and Ion Conductivity Study of Argyrodite (Li5.5PS4.5Cl1.5) according to Cooling Method

Author:

Park Sangwon,Lee Jin-Woong

Abstract

All solid-state batteries (ASSBs) are now anticipated to be an ultimate solution to the persistent safety issues of conventional lithium-ion batteries (LIBs). Contemporary society’s expanding power demands and growing energy consumption require energy storage with greater reliability, safety and capacity, which cannot be easily achieved with current state-of-the-art liquid-electrolyte-based LIBs. In contrast, these conditions are expected to be met by implementing ASSBs with high-performance solid-state electrolytes (SSEs). In this work, we altered the microscopic structure and Li diffusional behaviors of argyrodites (Li6-xPS5-xCl1+x), which were precisely monitored with cooling protocols. It was shown that, at the cooling speed of -3 <sup>o</sup>C·h<sup>-1</sup>, as the cooling rate decreased, impurities in Li5.5PS4.5Cl1.5 such as LiCl and Li3PO4 gradually diminished and eventually disappeared. At the same time, differences in the lattice sizes of Li5.5PS4.5Cl1.5 crystallites gradually decreased, resulting in a single phase Li5.5PS4.5Cl1.5. It was also found that the Cl content of the 4d crystallographic sites increased, eventually contributing to the improvement in ionic conductivity. This work also revealed the effect of cooling rates on the crystallographic atomic arrangements, which became weaker as a decrease in x. The correlations between ionic conductivities and structural features were experimentally verified via XRD and solid-state NMR studies.

Funder

Ministry of Education

National Research Foundation of Korea

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modelling and Simulation,Electronic, Optical and Magnetic Materials

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3