Thermoelectric Properties of N-type Mg<sub>3</sub>La<sub>0.005</sub>Mn<sub>x</sub>SbBi Materials Doped with La and Mn

Author:

Joo Sung-Jae,Son JiHui,Jang JeongIn,Min Bok-Ki,Kim Bong-Seo

Abstract

Mg<sub>3</sub>Sb<sub>2</sub>-based n-type materials are consisted of earth-abundant elements and possess comparable thermoelectric properties with n-type Bi<sub>2</sub>Te<sub>3</sub> at low temperatures, which make them promising candidates for cooling and power generation applications in terms of cost and performance. Substitution of Sb atom with chalcogen elements (Te, Se S) is a conventional method for n-type doping, but doping cations such as rare-earth elements and transition metals is also widely studied for its unique advantages. In this study, La and Mn were selected for co-doping of Mg3SbBi, and the thermoelectric performances of the doped materials were investigated. Mg<sub>3</sub>La<sub>0.005</sub>Mn<sub>x</sub>SbBi (0  <i>x</i>  0.015) polycrystalline samples were made by sintering the fine powders of the mother alloy after arc melting, in which elemental Mn and LaSb compound were included for n-type dual doping. Considering the loss of Mg at elevated temperatures by vaporization, the molar ratio of Mg, Sb, and Bi in the mixture for arc melting was set to 4 : 1 : 1 with excess Mg. Analysis shows that all the samples are n-type, and the electrical conductivity of Mg<sub>3</sub>La<sub>0.005</sub>Mn<sub>0.015</sub>SbBi increased by 62% from the Mn-free Mg<sub>3</sub>La<sub>0.005</sub>SbBi at 298 K. In addition, the lattice thermal conductivity (<i><sub>lat</sub></i>) decreased with increasing Mn content in the measured temperature range of 298-623 K. The minimum value of <i><sub>lat</sub></i> was about 0.60 W m<sup>-1</sup>K<sup>-1</sup> in Mg<sub>3</sub>La<sub>0.005</sub>Mn<sub>0.015</sub>SbBi at 523 K, which is about 19% smaller than that of the Mn-free sample. As a result of these enhancements in thermoelectric performance, the maximum figure of merit (<i>zT<sub>max</sub></i>) of 1.12 was obtained in Mg<sub>3</sub>La<sub>0.005</sub>Mn<sub>0.01</sub>SbBi and Mg<sub>3</sub>La<sub>0.005</sub>Mn<sub>0.015</sub>SbBi at 573 K, and the <i>zT</i> at 298 K increased by 73% to 0.35 in Mg<sub>3</sub>La<sub>0.005</sub>Mn<sub>0.015</sub>SbBi compared to Mn-free Mg<sub>3</sub>La<sub>0.005</sub>SbBi, which is beneficial to room-temperature applications.

Funder

Ministry of Science and ICT

National Research Council of Science and Technology

Korea Electrotechnology Research Institute

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3